## RoboChem and the Rise of Intelligent (Flow) Chemistry

## **Timothy Noël**

University of Amsterdam, Van 't Hoff Institute for Molecular Sciences, Flow Chemistry Group, Science Park 904, Amsterdam, The Netherlands t.noel@uva.nl

Website: www. NoelResearchGroup.com

The evolution of synthetic organic chemistry is increasingly driven by technological innovation at the interface of chemistry, engineering, and data science.<sup>[1]</sup> In particular, flow chemistry has emerged as a transformative platform, enabling enhanced mass and heat transfer, precise reaction control, and facile scalability.<sup>[2]</sup> Building on this foundation, we have developed RoboChem, an autonomous laboratory system that integrates flow reactors, real-time analytics, custom control software, and machine learning algorithms to enable closed-loop optimization of complex synthetic processes.<sup>[3,4]</sup>

RoboChem leverages Bayesian Optimization in combination with commercially available hardware to autonomously explore high-dimensional reaction spaces. This approach facilitates the self-optimization, intensification, and scale-up of challenging transformations, with particular emphasis on photocatalysis and other frontier areas of organic synthesis, where non-linear parameter interactions pose significant hurdles. Crucially, the continuous-flow architecture provides a robust and reproducible backbone that underpins the system's operational precision, stability, and scalability.

In this lecture, we will discuss the design principles and technological architecture of RoboChem, including algorithmic framework, flow reactor design, and in-line monitoring capabilities. Recent case studies will illustrate how autonomous platforms can accelerate the discovery and development of synthetically relevant transformations. Finally, we will explore the broader implications of integrating automation into chemical synthesis, including enhanced reproducibility, democratization of advanced methodologies,<sup>[4]</sup> and the digital transformation of synthetic organic chemistry.

- [1] Bonciolini, S.; Pulcinella, A.; Noël, T. Tech-enhanced synthesis: Exploring the synergy between organic chemistry and technology. *J. Am. Chem. Soc.* **2025**, *147*, 28523–28545.
- [2] Capaldo, L.; Wen, Z.; Noël, T. A field guide to flow chemistry for synthetic organic chemists. *Chem. Sci.* **2023**, *14*, 4230-4247.
- [3] Slattery, A; Wen, Z; Tenblad, P.; Pintossi, D.; Sanjose-Orduna, J.; den Hartog, T.; Noël, T. Automated self-optimization, intensification, and scale-up of photocatalysis in flow. *Science* **2024**, *383*, eadj1817.
- [4] Pilon, S.; Savino, E.; Bayley, O. M., Vanzella, M.; Claros, M.; Siasiaridis, P.; Liu, J.; Lukas, F.; Damian, M.; Tseliou, V.; Intini, N.; Slattery, A.; San Jose Orduna, J.; den Hartog, T.; Peters, R.; Gargano, A.; Mutti, F.; Noël, T. A Flexible and Affordable Self-Driving Laboratory for Automated Reaction Optimization. *ChemRxiv* 2025, DOI: 10.26434/chemrxiv-2025-73xqf